
RGB LED Cube: 2218847

Time Required: 10 hours depending on experience

Experience Level: Advanced

Required tools and parts: Soldering iron, Wire cutters, Stranded or solid hookup wire

2

3

What is it?

A 3-dimensional lattice of LEDs assembled together to display all sorts of colorful patterns and

information. Think of it as a low-resolution 3D monitor, which also doubles as a structural art piece.

How is it built?

This DIY project might be the simplest design of tri-color LED cubes out there. Without using

complicated components such as shift registers, decade counters, reference shifting transistors or any

other components to control LEDs, this project focuses on a much simpler, cost effective design. Other

LED cubes with extra components can cost upwards of $150, leaving you with an empty wallet and a

schematic-induced headache. This LED cube utilizes Charlieplexing and can operate using only 16 digital

pins of an Arduino controller with no additional hardware besides the RGB LEDs themselves.

What is an RGB LED?

A 5mm tri-color LED with separate red, green, and blue chips inside. Each consists of having 4

separate color pins – Cathode being the longest pin. Use this one LED to show 3 different colors or to

pulse width modulate all three and get a swirl of colors. Simply apply a low voltage, low current signal to

any of the color pins and connect a return, or ground, path to the cathode pin. Any RGB that uses a

diffused lens blends colors more effectively instead of appearing as 3 distinct LEDs.

Figure 1: LED individual equivalent of RGB LED

What is charlieplexing?

4

It is driving many LEDs with only a few pins of microcontroller. This can be useful when needing

to display a fancy dot matrix without many other components.

Figure 2: Foreword Current vs Foreword Voltage of LED

Figure 3: LED Operation

First it is important to understand how LEDs work. All LEDs have an operating point. When an

amount of voltage flows across the LED a current will flow through the LED as well. These two entities

are inseparable and are at the root of all electronics. Current needs to reach this operating point, usually

in milliamps, for the LED to turn on. This is achieved with the use of resistors. Without reaching the

operating point, the LED will remain off. There is also something interesting to note about LEDs -- in an

LED’s case, the relationship between voltage and current is exponential, meaning that little voltage

applied will generate greater changes in current. Be careful when playing with voltage, because too

much might damage the LED and you!

5

Figure 4: Example 1

Now, let’s get into the basics of charlieplexing. Our Arduino has several digital pins used to

output 5V. When connecting pins together, by setting one to 5V and another to 0V, we can send a

current in a very specific direction to do really creative things. In our case we use current to drive LEDs.

In the above example, when Pin A is ON and Pin B is OFF, only LED 1 lights up. LED 2 stays off because it

is in reverse-bias. If you don’t know what that means, reference this article. If we flip the pins where Pin

B is ON and Pin A is OFF, we see the counter effect: LED1 is off and LED 2 lights up. This is a controlled

way to light individual LEDs

Figure 5: Example 2

In a more complex scenario, we’ll take a look at the figure above. Take a look at the 3 pin

combinations: A-B, A-C, B-C. Each has a pair of LEDs going in either direction. If we turn Pin A ON, Pin B

OFF and disconnect Pin C, we see LED 1 turn on and everything else is off. If we turn Pin A OFF and Pin B

ON, while keeping Pin C disconnected, only LED 2 turns on. If we turn Pin A ON and turn Pin C OFF with

Pin B disconnected, LED 5 lights up. We can continue this pattern until each LED activates, but there is

something interesting to note. When you, for example, turn Pin A ON, Pin C OFF, and disconnect Pin B,

current travels through LED 5 as well as LED 1 and LED 3 in series. The reason only LED 5 turns on and

http://www.allaboutcircuits.com/vol_3/chpt_3/1.html
http://www.allaboutcircuits.com/vol_3/chpt_3/1.html

6

not LED 1 and LED 3, is due to not enough voltage passing across LED 1 and LED 3. In fact, this path gets

as much voltage total as LED 5, but it needs to equally split the voltage across LED 1 and 3, resulting in

too little current passing through each, so neither lights up. We can see this when Pin A is ON, Pin B is

OFF, and Pin C is disconnected also. Only LED 1 lights up, even though there is valid path for current to

travel through LED 5 and LED 4. Yet neither can get the sufficient current it needs.

With N pins on a microcontroller, you can control N * (N-1) LEDs. For 3 pins this means 3 * (3-1)

= 3 * 2 = 6 LEDs. In our case we have 64 RGB LEDs which means 64 * 3 = 192 individual LEDs. We would

need at least 15 pins to drive all of these. We’ll use 16 pins because it is a dividend of 64, which makes

things a lot easier.

Now we must clarify what is meant by turning Pins ON, OFF, and disconnected. For our

microcontroller, we can program pins to be in one of three states: HIGH, LOW, or INPUT. High and low

are two output modes that can either supply 5V or 0V. Use these to construct you signal paths, where

current will flow from the larger to the smaller voltage. Input is a high impedance mode, which can be

used to block incoming current into a pin. Imagine as if there is a very large resistor placed in front of a

pin. No current will enter this pin and the pin won’t act as an output. This is useful when attaching wires

to a pin but you would like to “disconnect” the pin by not allowing any current to flow into it.

Lastly, we must mention a phenomenon that occurs when supplying just the right amount

voltage to an LED. Notice in the LED operating chart that there is a dim region. A dim region represents

an amount of voltage that when supplied, the LED will faintly light up but it won’t glow like in typical

application. It is important to know that the dim region and operating point will vary from each color of

LED, because each color will have a different operating region. Red will need the least amount of voltage

to glow, green the second least and blue will need the most amount of voltage. Each color in respect to

red, green, and blue has a higher dim region and operating point than the last. You might find that red

LEDs will glow dimly when blue is illuminated. This can be fixed if the forward voltage of any different

colored LED is roughly the same as the operating current. This would require more pins than what is

available because the blue/green charlieplex matrix would need to separate from the red one.

Parts List

Quantity Item SKU

64 RGB Common Cathode LED 2125181

1 PCB Board 206587

1 Arduino Nano (Rev. 3) 2121148

4 Standoffs 393474

4 Hex Nuts 40943

2 Female Header 16-Pin 308592

Assembling a Column

7

The LEDs come in a clear lense, but need to be

diffused to widen the viewing angle. Begin by hand

sanding the entire area of each LEDs plastic dome

with 200 grit sandpaper. It is important to consider

the corsness of the sandpaper, as too fine will take a

long time to complete and too course will shave

much of the pastic off. 200 grit is a recommended

approach.

Figure 6: Diffusing the LED

Once all the LEDs are diffused, take all four of the

leads and bend them out in 90ᵒ to each other,

according to the following diagram (Fig. 7) The black

pin represents the cathode. Also, note that the flat

spot on the base of the LED is nearest to the red pin

and you should hold each LED in the same orientation

with the flat spot pointing up, like in the diagram. Be

sure to bend the leads the same way for each LED so

it is easier to put together later.

Figure 6a: Marking the ground pin

Figure 7: Bending the legs Use a black felt marker to mark the ground pin.

8

Include a testing procedure to check if all the colors work in

the LEDs. This is easier when the leads are spread apart.

Use a 9V battery in series with a 330Ω resistor, by taping

one end of the resistor to the positive(+) terminal and

keeping the ground leg of the LED on the negative(-)

terminal. Gently touch each leg with the resistor while

keeping the ground leg of the LED touching the (-).

Red should appear brightest and blue the dimmest.

It is possible to use a larger resistor than 330, but not

lower. Using too low of a resistance value may blow one or

more colors inside the LED. Using to high of a resistor might

make certain colors hard to see.

 Figure 8: Testing the LED

In each column, the LEDs will be all

rotated 90ᵒ from each other. So keep

track of which way the leads are

rotated. If you have lost track of which

rotation you are on, reference the

marked leg of the LED. The blue leg in

the image represents ground. Notice

each LED’s flat spot is turned 90

degrees relative to its neighbor.

Figure 9: Lining up the LEDs

9

The legs are bent to look like a

pitchfork. The PCB board is used as the

jig where the LEDs are placed to create

the straightest columns possible. The

bent legs are spaced an even 3 holes

apart from each other, where each LED

is spaced 12 holes away from each

other. Use pliers to grip the legs up to

the base and bend the legs. It just so

happened that the pliers used for this

demonstration were 3 holes apart. The

spacing isn’t so important. These

distances are recommended, but can be

changed to meet your own wants. In

addition, you can use 10 pieces of

masking tape level the bulbs with the

board. Refer to this figure to see how

Figure 10: Bending the legs for alignment each LED is aligned in the column. Check out this video

to see how

https://www.youtube.com/watch?v=b4KZepB-5u4&list=UUTuIaIUIZo_Wj9UoSjspUQw&index=1
https://www.youtube.com/watch?v=b4KZepB-5u4&list=UUTuIaIUIZo_Wj9UoSjspUQw&index=1
https://www.youtube.com/watch?v=b4KZepB-5u4&list=UUTuIaIUIZo_Wj9UoSjspUQw&index=1

10

Caution: Do not let the iron touch the LED

for more than a couple of seconds. Heat can

damage LEDs.

Figure 11: Placing LEDs in the jig

11

Make straight wire!

Cut some wire about 4.5” to 5” long and

strip the insulation. You can pull on the

wire with pliers in each hand or use a vice

grip and one set of pliers to straighten the

wire. Watch the video to see how…

Figure 12: Wire tightened in a vice

https://www.youtube.com/watch?v=Si-Xl63bTi0
https://www.youtube.com/watch?v=Si-Xl63bTi0

12

While keeping the LEDs

in place, lay a straight

wire across one side of

the column. Solder it to

the legs of the LEDs and

repeat for the other

side.

Figure 13: Laying the first support

Solder another piece of

straight wire to the

opposite side of the

column.

Figure 14: Laying the second support

13

Flip the board to its back side and push

the column out of the jig. Use two hands

when pushing to keep it from bending.

Figure 15: Taking the column out of the jig

Lay the column on one side. Use a

free hand to lay a straight piece of

wire across the middle legs of the

column. Solder the wire into place.

Figure 16: Laying the third support

14

Solder a piece of wire to the last

side of the column. Repeat for the

other 15 columns.

Figure 17: Laying the third support

15

Here’s how the column should look

like after soldering all 4 pieces of

straight wire to the legs. Do not cut

the legs or any excess wire at this

point. Each column will need to be

tested to ensure proper functionality

after soldering.

While in the photo it looks like only 2

straight wires were soldered, really

there are 4.

Figure 18: One column with all the trimmings in place

Testing the Columns

16

Test the columns to make sure LEDs weren’t

damaged in the soldering process. Included is a

test sketch and a hookup diagram. Here’s a video

to show how the sketch works…

Wire the legs of the column to the corresponding

pins of the Arduino. Assemble each column into

breadboard one at a time, run the legs to the

Arduino via wires, then run the sketch by copying

or opening it up in the Arduino IDE.

Figure 19: Hookup diagram

Testing:

https://www.youtube.com/watch?v=hJyflgWXZO4
https://www.youtube.com/watch?v=hJyflgWXZO4

17

 Here’s some code to test all the LEDs in a column after soldering. It will start at the bottom-most

LED and cycle through possible colors moving up to the next LED. Make sure to align the column

specified by the image to test brightness and LED orientation.

 Tip: Wear sunglasses when running software! While the code will not damage the LEDs, staring

at the LEDs for an extended amount of time will damage your sight.

Disclaimer on Light Bleeding:

 When testing an individual column, don’t worry about other LEDs bleeding colors.

 Also note that there is no actual ground, but just a potential difference, or voltage drop, across

the different pins. Each pin is ‘on’ but when tested with a multimeter notice how each pin combination

is set to a different voltage resulting in different amounts of current moving through the pins at all

times. “Ground” is set to a lower potential than all the rest, so that’s why we see some light bleeding

because the voltage difference across the same pin combination for a different LED might be enough for

it to dimly turn on. There is no real ground, but only higher and lower potentials across different pins

resulting in different colors turning on at different intensities.

An analogy: Imagine as if there are 4 different waterfalls rushing water at different heights. The highest

waterfall will achieve the fastest water falling, assuming a common source. The fastest water is the

strongest and will therefore turn the water wheel located at the bottom. The other weaker waterfalls

will still fall on their water wheels, but will offer a lesser strength to turn them, resulting in slow moving

wheels with respect to the fastest one. They are still turning, but slowly. The same case is in our LED

project except water speed is current, height is voltage, and the wheel is the color that turns on. A

higher potential, or voltage, will look the brightest.

 For example:

 Pin combination 1-2 (Red): Voltage = 0.8V

 Pin combination 1-3 (Blue): Voltage = 1.2V

 Pin combination 1-4 (Green): Voltage = 2.2V

 Combination 1-4 receives the most amount of current passing through it, because it has the

highest potential difference between the pins (2.2V), resulting in the color green to turn on!

 Other current may leak into another LED because the potential difference is high enough to pass

some current to notice a visual effect. Other LEDs in the column get this same current, but not to the

same level, that is why one LED is the brightest, one is dim, and the others can hardly be seen. Not

enough current passes to these LEDs to notice the same visual intensity.

Building the Whole Cube!

18

Trim the excess legs off of the columns to get a clean look.

Time to strategically fit the columns into the PCB! It is very important to keep them all aligned in the

same direction, so to make wiring as easy as possible. Begin by fitting one column into a corner of the

board. Confirm the proper height you would like the column to stand and solder the legs into place.

Figure 20: Trimming excess wire

Figure 21: Direction is important when placing columns

19

Start with the corners and then place the columns row by row. In this example, each column is spaced

out 12 holes away from each other. Orient the flat spots of the bottom most LED in the same direction.

After the corners have been filled it becomes

easier to solder the rest of the columns with the

help from a jig. This one is made from

cardboard, spacing holes out 1.125” apart. The

holes are big enough for the tops of the LEDs to

fit through and touch through the other side.

The idea is to fit the columns into the PCB first,

flip over the board with all of the columns in,

and solder them all at once from the other side.

Before placing the other columns in, focus on

making the PCB sit level with the surface .The

corner columns should be soldered in first to

level the board for the other columns to sit.

Begin by soldering one leg of each column to

board at the height you want. Once the board is

flipped over, loosen some solder and hand

adjust each column to fit into the holes. Once

you are happy with the position of each column,

solder the legs into place.

.

Figure 22: Corners all go in the same direction

20

Figure 23: Making a cardboard jig

Here’s what the board should look like when all of the columns

are at their proper height and fit into their holes.

Figure 24: Soldering all the columns at once

All of the columns should face the

same direction. This would be a

good point to check to see if in

fact they are. Use the “flat spot”

of the bottom-most LED to check

each column.

 Figure 25: Close - up of columns facing same direction

21

Finished looking product, without

the Arduino. Note the columns in

the figure aren’t to scale with the

board.

Figure 26: All 16 columns

Flip the board over to attach the wires. The

easiest way to wire the board is in four

groups of four .

Red arrows indicate where the columns

were pointing on the top side.

 Figure 27: Flip the board and mark the front

22

The first and second groups are fairly

simple.

Zoom in to see which pins are connected.

Wire 1

Wire 2

Wire 3

Wire 4

Figure 28: Easy, first group

Wire 5

Wire 6

Wire 7

Wire 8

Figure 29: Easy, second group

23

The third group is kind tricky and the fourth

group is the hardest in my opinion.

Wire 9

Wire 10

Wire 11

Wire 12

Figure 30: Intermediate, third group

Wire 13

Wire 14

Wire 15

Wire 16

 Figure 31: Difficult, fourth group

24

Connect those 16 wires to the pins on the

Arduino. A table for wiring is included

below (Table 1).

The Arduino is fitted into headers so not

to permanently fix it into the PCB. Solder

the wires to the respective pins of the

headers.

Screw the standoffs to the board.

Use a mini USB cable for power.

Figure 32: Finished product. Just needs code!

Table 1: Wiring reference chart

 Wire Number Arduino Pin AVR Pin

1 Digital 2 Port D – Pin 2 [PD2]

2 Digital 3 Port D – Pin 3 [PD3]

3 Digital 4 Port D – Pin 4 [PD4]

4 Digital 5 Port D – Pin 5 [PD5]

5 Digital 6 Port D – Pin 6 [PD6]

6 Digital 7 Port D – Pin 7 [PD7]

7 Digital 8 Port B – Pin 0 [PB0]

8 Digital 9 Port B – Pin 1 [PB1]

9 Digital 9 Port B – Pin 2 [PB2]

10 Digital 11 Port B – Pin 3 [PB3]

http://dlnmh9ip6v2uc.cloudfront.net/tutorialimages/rfm22_shield_lp_images/header_adjust.JPG
http://dlnmh9ip6v2uc.cloudfront.net/tutorialimages/rfm22_shield_lp_images/header_adjust.JPG

25

11 Digital 12 Port B – Pin 4 [PB4]

12 Digital 13 Port B – Pin 5 [PB5]

13 Analog 0 (Digital 14) Port C – Pin 0 [PC0]

14 Analog 1 (Digital 15) Port C – Pin 1 [PC1]

15 Analog 2 (Digital 16) Port C – Pin 2 [PC2]

16 Analog 3 (Digital 17) Port C – Pin 3 [PC3]

Testing the Cube

Once the cube is all wired up to the Arduino and you would like to make sure the LEDs all still light up,

run this simple test. Just upload this piece of code to the Arduino and watch different colors cycle

through the columns. You should see all the different columns light up in order.

How is it programmed?

The libraries developed by Asher Glick for the charliecube provide you with a nice set of functions that

you can use to draw animations.

Click on the hyperlink provided, and download the 5 files provided. Make sure they all sit in the same

directory/folder before compiling. You might need to manually include the header files (.h) to the IDE, if

compiling doesn’t work right away.

In addition to Asher’s code, Jules Meredith has uploaded more patterns based on Asher’s build and

code.

drawLed() drawBoxOutline() drawHollowBox() flushBuffer()

drawBox() drawBoxWalls() drawLine() clearBuffer()

https://github.com/AsherGlick/Charliecube
https://github.com/AsherGlick/Charliecube
https://github.com/Fishofgold/4x4x4-RGB-LED-Cube-
https://github.com/Fishofgold/4x4x4-RGB-LED-Cube-

26

drawLed()

This function turns on LEDs at a specified position. Depending on which color this function turns on

different colors of the LED.

Valid Permutations
drawLed(color, brightness, x-pos, y-pos, z-pos);

drawLed(color, x-pos, y-pos, z-pos);

Arguments
Color: what color the led should be

 Integer: red. blue, green .purple, yellow, teal, white, off

Brightness: what brightness should the led be at

 Integer 0 1 2 3 4 5 6 7 8 HALF=4 FULL=8

Start-x: x coordinate for the starting point

 Integer 0 1 2 3

Start-y: y coordinate for the starting point

 Integer 0 1 2 3

Start-z: z coordinate for the starting point

Integer 0 1 2 3

27

Example

#include "cubeplex.h"

int color = red; void

setup() {
 // initilize the cube display

initCube();

 // how many seconds until continue Pattern is set to false

animationMax = 10;
}
void loop() {

randomLed();
}
void randomLed(){

continuePattern = true; int

animationSpeed = 100; while

(continuePattern) { int

xpos = random(0,4); int

ypos = random(0,4); int

zpos = random(0,4);

 drawLed(color,xpos,ypos,zpos);

 flushBuffer();

clearBuffer();
 delay(animationSpeed);
 }

}

drawBox()

This function will draw a filled in box of the specified color on the cube

Valid Permutations
drawBox (color, brightness, start-x , start-y, start-z, end-x, end-y,

end-z);
drawBox (color, start-x , start-y, start-z, end-x, end-y, end-z);

28

Arguments
Color: what color the led should be

 Integer: red. blue, green .purple, yellow, teal, white, off

Brightness: what brightness should the led be at

 Integer 0 1 2 3 4 5 6 7 8 HALF=4 FULL=8

Start-x: x coordinate for the starting point

 Integer 0 1 2 3

Start-y: y coordinate for the starting point

 Integer 0 1 2 3

Start-z: z coordinate for the starting point

 Integer 0 1 2 3

End-x: x coordinate for the ending point

Integer 0 1 2 3

End-y: y coordinate for the ending point

 Integer 0 1 2 3

End-z: z coordinate for the ending point

 Integer 0 1 2 3

29

Example

#include "cubeplex.h" void

setup() {
 //initilize the cube display

initCube();

 // set the number of seconds until continuePattern is set to false

animationMax = 10;
}
void loop() {

bigBlueBox();

tinyGreenBox();
}
void bigBlueBox() {

continuePattern = true;

draw(blue,0,0,0,3,3,3);

flushBuffer(); clearBuffer();
 // do nothing while the pattern continues

while(continuePattern);
}
void tinyGreenBox() {

continuePattern = true;

drawBox(green,FULL,1,1,1,2,2,2);

flushBuffer(); clearBuffer();
 // loop until the pattern is done

while(continuePattern);

}

drawHollowBox()

This function will draw the walls, ceiling, and floor of a defined box

Valid Permutations
drawHollowBox (color, brightness, start-x , start-y, start-z, end-x,

end-y, end-z);
drawHollowBox (color, start-x , start-y, start-z, end-x, end-y,

endz);

30

Arguments
Color: what color the led should be

 Integer: red. blue, green .purple, yellow, teal, white, off

Brightness: what brightness should the led be at

 Integer 0 1 2 3 4 5 6 7 8 HALF=4 FULL=8

Start-x: x coordinate for the starting point

 Integer 0 1 2 3

Start-y: y coordinate for the starting point

 Integer 0 1 2 3

Start-z: z coordinate for the starting point

 Integer 0 1 2 3

End-x: x coordinate for the ending point

 Integer 0 1 2 3

End-y: y coordinate for the ending point

 Integer 0 1 2 3

End-z: z coordinate for the ending point

Integer 0 1 2 3

31

Example

#include "cubeplex.h"

int color = red; void

setup() {
 // initilize the cube display

initCube();
 // set the number of seconds each animation should run for

animationMax = 10;
}
void loop() {

pulsingCube();
}
void pulsingCube() { continuePattern

= true; int animationSpeed = 100;

while (continuePattern) { for (int

i = 0; i < 4; i++) {

drawHollowBox(color,0,0,0,i,i,i);

flushBuffer(); clearBuffer();
 delay(animationSpeed);
 }
 for (int i = 0; i < 4; i++) {

drawHollowBox(color,i,i,i,3,3,3);

flushBuffer(); clearBuffer();
 delay(animationSpeed);
 }
 color=nextColor(color);
 }

}

drawBoxOutline()

This function will draw edges of a defined box but none of the planes

Valid Permutations
drawBoxOutline (color, brightness, start-x , start-y, start-z, end-x,

end-y, end-z);
drawBoxOutline (color, start-x , start-y, start-z, end-x, end-y,

endz);

32

Arguments
Color: what color the led should be

 Integer: red. blue, green .purple, yellow, teal, white, off

Brightness: what brightness should the led be at

 Integer 0 1 2 3 4 5 6 7 8 HALF=4 FULL=8

33

Start-x: x coordinate for the starting point

Integer 0 1 2 3

Start-y: y coordinate for the starting point

 Integer 0 1 2 3

Start-z: z coordinate for the starting point

 Integer 0 1 2 3

End-x: x coordinate for the ending point
Integer 0 1 2 3

End-y: y coordinate for the ending point

 Integer 0 1 2 3

End-z: z coordinate for the ending point

 Integer 0 1 2 3

Example

#include "cubeplex.h" int

color = red;

void setup() {
 // initilize the cube display

initCube();
 // set the number of seconds each animation should run for

animationMax = 10;
}
void loop() {

pulsingCube();
}
void pulsingCube() { continuePattern =

true; int animationSpeed = 100;

while (continuePattern) { for (int i

= 0; i < 4; i++) {

drawBoxOutline(color,0,0,0,i,i,i);

flushBuffer(); clearBuffer();
 delay(animationSpeed);
 }
 for (int i = 0; i < 4; i++) {

drawBoxOutline(color,i,i,i,3,3,3);

flushBuffer(); clearBuffer();
 delay(animationSpeed);
 }
 color=nextColor(color);
 }

}

34

drawBoxWalls()

This function will draw the vertical walls and all four sides of a defined box

Valid Permutations
drawBoxWalls (color, brightness, start-x , start-y, start-z, end-x,

end-y, end-z);
drawBoxWalls (color, start-x , start-y, start-z, end-x, end-y, end-z);

Arguments
Color: what color the led should be

 Integer: red. blue, green .purple, yellow, teal, white, off

Brightness: what brightness should the led be at

 Integer 0 1 2 3 4 5 6 7 8 HALF=4 FULL=8

Start-x: x coordinate for the starting point

 Integer 0 1 2 3

Start-y: y coordinate for the starting point

 Integer 0 1 2 3

Start-z: z coordinate for the starting point

 Integer 0 1 2 3

End-x: x coordinate for the ending point

 Integer 0 1 2 3

End-y: y coordinate for the ending point

 Integer 0 1 2 3

End-z: z coordinate for the ending point

 Integer 0 1 2 3

35

Example

#include "cubeplex.h" int

color = red;

void setup() {
 // initilize the cube display

initCube();
 // set the number of seconds each animation should run for

animationMax = 10;
}
void loop() {

fountian();
}
void fountian() {

continuePattern = true; int

animationSpeed = 100; while

(continuePattern) { for (int z

= 0; z <= 3; z++) {
 drawBoxWalls(color,1,1,z,2,2,z);

flushBuffer(); clearBuffer();

delay(animationSpeed);
 }
 for (int z = 3; z >= 0; z--) {

drawBoxWalls(color,0,0,z,3,3,z);

flushBuffer(); clearBuffer();

delay(animationSpeed);
 }
 color=nextColor(color);
 }

}

drawLine()

This function will attempt to draw a line between the two points given. Due to the limited availability

of pixels the best approximation is chosen for each pixel value

Valid Permutations
drawLine (color, brightness, start-x , start-y, start-z, end-x, end-y,

end-z);
drawLine (color, start-x , start-y, start-z, end-x, end-y, end-z);

36

Arguments
Color: what color the led should be

 Integer: red. blue, green .purple, yellow, teal, white, off

Brightness: what brightness should the led be at

 Integer 0 1 2 3 4 5 6 7 8 HALF=4 FULL=8

Start-x: x coordinate for the starting point

 Integer 0 1 2 3

Start-y: y coordinate for the starting point

 Integer 0 1 2 3

Start-z: z coordinate for the starting point

 Integer 0 1 2 3

End-x: x coordinate for the ending point

 Integer 0 1 2 3

End-y: y coordinate for the ending point

 Integer 0 1 2 3

End-z: z coordinate for the ending point

Integer 0 1 2 3

37

Example

#include "cubeplex.h"

int color = red; void

setup() { initCube;
 animationMax = 10;
}
void loop() {

planarSpin();
}
void planarSpin() {

continuePattern = true; int

animationSpeed = 50;
 int spinsPerColor = 5; // a spin is actually half a

revolution while (continuePattern) { int x = 0; int y

= 0;
 for (int i = 0; i < spinsPerColor; i++) {

for (int x = 0; x < 3; x++) {

drawLine(color,x,0,0,3-x,3,0);

drawLine(color,x,0,1,3-x,3,1);

drawLine(color,x,0,2,3-x,3,2);

drawLine(color,x,0,3,3-x,3,3);

flushBuffer(); clearBuffer();
 delay(animationSpeed);
 }
 for (int y = 0; y < 3; y++) {

drawLine(color,3,y,0,0,3-y,0);

drawLine(color,3,y,1,0,3-y,1);

drawLine(color,3,y,2,0,3-y,2);

drawLine(color,3,y,3,0,3-y,3);

flushBuffer(); clearBuffer();
 delay(animationSpeed);
 }

}
 color = nextColor(color);
 }

}

flushBuffer()

This takes the buffer frame and sets the display memory to match, because the display memory

needs to be faster it is split up into two arrays instead of just one. The display frame is actually a cyclic

38

linked list which allows the program to just loop through and turn on the LEDs without the need to

check to see if it is at the end of the loop

Valid Permutations
flushBuffer();

Arguments
No Arguments

clearBuffer()

This takes the buffer frame and sets the display memory to match, because the display memory

needs to be faster it is split up into two arrays instead of just one. The display frame is actually a cyclic

linked list which allows the program to just loop through and turn on the LEDs without the need to

check to see if it is at the end of the loop

clearBuffer();
Valid Permutations

No Arguments
Arguments

You may also like –

Blue LED Cube 8x8x8: The SKU: 2168940

Party Dazzler

Green 8x8x8 LED Cube SKU: 2172017

http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2168940_-1
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2168940_-1
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2168940_-1
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2168940_-1
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2172017_-1
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2172017_-1

39

White 8x8x8 LED Cube SKU: 2169539

http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2169539_-1
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2169539_-1

