Jameco Part Number 12925NSC
CD4029BM/CD4029BC Presettable Binary/Decade Up/Down Counter

General Description

The CD4029BM/CD4029BC is a presettable up/down counter which counts in either binary or decade mode depending on the voltage level applied at binary/decade input. When binary/decade is at logical "1", the counter counts in binary, otherwise it counts in decade. Similarly, the counter counts up when the up/down input is at logical "1" and vice versa.

A logical "1" preset enable signal allows information at the "jam" inputs to preset the counter to any state asynchronously with the clock. The counter is advanced one count at the positive-going edge of the clock if the carry in and preset enable inputs are at logical "0". Advancement is inhibited when either or both of these two inputs are at logical "1". The carry out signal is normally at logical "1" state and goes to logical "0" state when the counter reaches its maximum count in the "up" mode or the minimum count in the "down" mode provided the carry input is at logical "0" state.

All inputs are protected against static discharge by diode clamps to both VDD and VSS.

Features

- Wide supply voltage range 3V to 15V
- High noise immunity 0.45 VDD (typ.)
- Low power fan out of 2 driving 74L or 1 driving 74LS
- Parallel jam inputs
- Binary or BCD decade up/down counting

Logic Diagram
Absolute Maximum Ratings
(Notes 1 and 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

DC Supply Voltage (V_{DD}) $-0.5V$ to $+18V_{DC}$
Input Voltage (V_{IN}) $-0.5V$ to $V_{DD} + 0.5V_{DC}$
Storage Temperature Range (T_{S}) $-65^\circ C$ to $+150^\circ C$
Power Dissipation (P_{D})
- Dual-In-Line: 700 mW
- Small Outline: 500 mW
Lead Temperature (T_{L})
(Soldering, 10 seconds) $260^\circ C$

Recommended Operating Conditions (Note 2)
DC Supply Voltage (V_{DD}) 3V to 15V$_{DC}$
Input Voltage (V_{IN}) 0V to V_{DD} V_{DC}
Operating Temperature Range (T_{A})
- CD4029BM $-55^\circ C$ to $+125^\circ C$
- CD4029BC $-40^\circ C$ to $+85^\circ C$

DC Electrical Characteristics CD4029BM (Note 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>$-55^\circ C$</th>
<th>$+25^\circ C$</th>
<th>$+125^\circ C$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>Quiescent Device Current</td>
<td>$V_{DD} = 5V$</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>150 µA</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low Level Output Voltage</td>
<td>$</td>
<td>I</td>
<td>< 1 \mu A$</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>High Level Output Voltage</td>
<td>$</td>
<td>I</td>
<td>< 1 \mu A$</td>
<td>4.95</td>
<td>4.95</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low Level Input Voltage</td>
<td>$V_{DD} = 5V, V_{O} = 0.5V$</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>3.0 V</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Low Level Output Current (Note 3)</td>
<td>$V_{DD} = 5V, V_{O} = 0.4V$</td>
<td>0.64</td>
<td>0.51</td>
<td>0.88</td>
<td>0.36 mA</td>
</tr>
<tr>
<td>I_{OH}</td>
<td>High Level Output Current (Note 3)</td>
<td>$V_{DD} = 5V, V_{O} = 4.6V$</td>
<td>-0.64</td>
<td>-0.51</td>
<td>-0.88</td>
<td>-0.36 mA</td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input Current</td>
<td>$V_{DD} = 15V, V_{IN} = 0V$</td>
<td>-0.1</td>
<td>-10$^{-5}$</td>
<td>-0.1</td>
<td>-1.0 µA</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics CD4029BC (Note 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>$-40^\circ C$</th>
<th>$+25^\circ C$</th>
<th>$+85^\circ C$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>Quiescent Device Current</td>
<td>$V_{DD} = 5V$</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>150 µA</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low Level Output Voltage</td>
<td>$</td>
<td>I</td>
<td>< 1 \mu A$</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>High Level Output Voltage</td>
<td>$</td>
<td>I</td>
<td>< 1 \mu A$</td>
<td>4.95</td>
<td>4.95</td>
</tr>
</tbody>
</table>

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

Note 3: I_{OL} and I_{OH} are tested one output at a time.
DC Electrical Characteristics

Symbol	**Parameter**	**Conditions**	**-40°C**	**+25°C**	**+85°C**	**Units**
V\textsubscript{IL}	Low Level Input Voltage	V\textsubscript{DD} = 5V, V\textsubscript{O} = 0.5V or 4.5V	3.0	4.0	7.0	V
		1.5	3.0	4.0	1.5	3.0

V\textsubscript{IH} | High Level Input Voltage | V\textsubscript{DD} = 5V, V\textsubscript{O} = 0.5V or 4.5V | 3.5 | 7.0 | 11.0 | V
 | | | 7.0 | 7.0 | 11.0 | 7.0 | 7.0 | 11.0 | ns

I\textsubscript{OL} | Low Level Output Current (Note 3) | V\textsubscript{DD} = 5V, V\textsubscript{O} = 0.4V | 0.44 | 0.88 | 3.6 | mA
 | | | 1.1 | 2.25 | 3.0 | 0.9 | 2.4 | mA

I\textsubscript{OH} | High Level Output Current (Note 3) | V\textsubscript{DD} = 5V, V\textsubscript{O} = 4.6V | -0.44 | -0.88 | -3.0 | mA
 | | | 1.1 | 2.25 | 8.8 | -0.9 | 2.4 | mA

I\textsubscript{IN} | Input Current | V\textsubscript{DD} = 15V, V\textsubscript{IN} = 0V | -0.3 | -10-5 | -3.6 | μA
 | | | 0.3 | 10-5 | -8.8 | 1.0 | μA

AC Electrical Characteristics

Symbol	**Parameter**	**Conditions**	**Min**	**Typ**	**Max**	**Units**
\text{t}_{PHL} or \text{t}_{PLH}	Propagation Delay Time to Q Outputs	V\textsubscript{DD} = 5V	400 ns			
		200 ns				
		170 ns				
		140 ns				

\text{t}_{PHL} or \text{t}_{PLH} | Propagation Delay Time to Carry Output | V\textsubscript{DD} = 5V | 320 ns
 | | | 135 ns
 | | | 270 ns
 | | | 110 ns

\text{t}_{THL} or \text{t}_{TLH} | Transition Time/Q or Carry Output | C\textsubscript{L} = 15 pF | 510 ns
 | | | 285 ns
 | | | 120 ns
 | | | 95 ns

\text{t}_{WH} or \text{t}_{WL} | Minimum Clock Pulse Width | V\textsubscript{DD} = 5V | 320 ns
 | | | 160 ns
 | | | 80 ns

\text{t}_{CL} or \text{t}_{CCL} | Maximum Clock Rise and Fall Time | V\textsubscript{DD} = 5V | 15 μs
 | | | 10 μs
 | | | 5 μs

\text{t}_{SU} | Minimum Set-Up Time | V\textsubscript{DD} = 5V | 360 ns
 | | | 180 ns
 | | | 70 ns
 | | | 55 ns

\text{f}_{CL} | Maximum Clock Frequency | V\textsubscript{DD} = 5V | 3.1 MHz
 | | | 1.5 MHz
 | | | 3.7 MHz
 | | | 4.5 MHz

\text{C}_{IN} | Average Input Capacitance | Any Input | 7.5 pF
 | | | 5 pF

\text{C}_{PD} | Power Dissipation Capacitance | Per Package (Note 4) | 65 pF
 | | | 5 pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: V\textsubscript{SS} = 0V unless otherwise specified.

Note 3: I\textsubscript{OH} and I\textsubscript{OL} are tested one output at a time.

* TA = 25°C, CL = 50 pF, R\textsubscript{L} = 200k, Input t_{CL} – t_{CCL} = 20 ns, unless otherwise specified.
AC Electrical Characteristics

$T_A = 25^\circ C, C_L = 50 \text{ pF}, R_L = 200 \text{ k}, \text{Input } t_{CL} = t_{CL} = 20 \text{ ns}$, unless otherwise specified (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PHL} or t_{PLH}</td>
<td>Propagation Delay Time to Q output</td>
<td>$V_{DD} = 5\text{V}$</td>
<td>285</td>
<td>570</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 10\text{V}$</td>
<td>115</td>
<td>230</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 15\text{V}$</td>
<td>95</td>
<td>195</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{PHL} or t_{PLH}</td>
<td>Propagation Delay Time to Carry Output</td>
<td>$V_{DD} = 5\text{V}$</td>
<td>400</td>
<td>800</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 10\text{V}$</td>
<td>165</td>
<td>330</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 15\text{V}$</td>
<td>135</td>
<td>260</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{WH}</td>
<td>Minimum Preset Enable Pulse Width</td>
<td>$V_{DD} = 5\text{V}$</td>
<td>80</td>
<td>160</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 10\text{V}$</td>
<td>30</td>
<td>60</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 15\text{V}$</td>
<td>25</td>
<td>50</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{REM}</td>
<td>Minimum Preset Enable Removal Time</td>
<td>$V_{DD} = 5\text{V}$</td>
<td>150</td>
<td>300</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 10\text{V}$</td>
<td>60</td>
<td>120</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 15\text{V}$</td>
<td>50</td>
<td>100</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Carry Input Operation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PHL} or t_{PLH}</td>
<td>Propagation Delay Time to Carry Output</td>
<td>$V_{DD} = 5\text{V}$</td>
<td>265</td>
<td>530</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 10\text{V}$</td>
<td>110</td>
<td>220</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 15\text{V}$</td>
<td>90</td>
<td>180</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{PHL}, t_{PLH}</td>
<td>Propagation Delay Time to Carry Output</td>
<td>$C_L = 15 \text{ pF}$</td>
<td>200</td>
<td>400</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 5\text{V}$</td>
<td>85</td>
<td>170</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 15\text{V}$</td>
<td>70</td>
<td>140</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0\text{V}$ unless otherwise specified.

Note 3: I_{OH} and I_{OL} are tested one output at a time.

Note 4: CPD determines the no load AC power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note, AN-90.

Connection Diagram

Dual-In-Line Package

![Connection Diagram](image)

Order Number CD4029B
Carry out lines at the 2nd or later stages may have a negative-going spike due to differential internal delays. These spikes do not affect counter operation, but if the carry out is used to trigger external circuitry the carry out should be gated with the clock.
CD4029BM/CD4029BC Presettable Binary/Decade Up/Down Counter

Physical Dimensions inches (millimeters)

Order Number CD4029BMJ or CD4029BCJ
NS Package Number J16A

Order Number CD4029BMN or CD4029BCN
NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

National Semiconductor Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1-800-272-9959
Fax: 1-800-737-7018

National Semiconductor Europe
1900 Baggot Street South
Boardman, OH 44513
Tel: (+1) 800-323-9307
Fax: (+1) 800-323-3032

National Semiconductor Hong Kong Ltd.
13th Floor, Sino Centre
3 Canton Rd.
Tsimshatsui, Kowloon
Tel: (+852) 2737-1600
Fax: (+852) 2736-9960

National Semiconductor Japan Ltd.
Tokyo, Osaka, Nagoya, Yokohama
Fax: 81-03-5452-2408

National Semiconductor Europe
1111 West Bardin Road
Arlington, TX 76017
Tel: 1-800-272-9959
Fax: 1-800-737-7018

National Semiconductor Europe
1900 Baggot Street South
Boardman, OH 44513
Tel: (+1) 800-323-9307
Fax: (+1) 800-323-3032

National Semiconductor Hong Kong Ltd.
13th Floor, Sino Centre
3 Canton Rd.
Tsimshatsui, Kowloon
Tel: (+852) 2737-1600
Fax: (+852) 2736-9960

National Semiconductor Japan Ltd.
Tokyo, Osaka, Nagoya, Yokohama
Fax: 81-03-5452-2408