The SAA7115 is a video capture device for applications ranging from small screen products such as digital set-top boxes and personal video recording applications to large screen devices like LCD projectors that benefit from its improved comb filter performance and 10-bit video output capabilities.

It combines a two channel analog pre-processing circuit and a high performance scaler. The pre-processing circuit includes source selection, an anti-aliasing filter and an analog to digital converter, an automatic clamp and gain control, two clock generation circuits and a digital multi-standard decoder containing two-dimensional chrominance/luminance separation using an improved adaptive comb filter. The high performance scaler features variable horizontal and vertical up and down scaling and a Brightness Contrast Saturation (BCS) control circuit. Based on the principle of line-locked clock decoding, the decoder is able to decode PAL, SECAM and NTSC signals into ITU-601 compatible colour component values.

It accepts CVBS or S-Video (Y-C) analog inputs from TV or VCR sources, including weak and distorted signals. The expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) can be used either to output unscaled video using 10-bit or 8-bit dithered resolution or to connect to other external digital video sources for reuse of the SAA7115’s scaler features. An enhanced image port (I-port) supports 8(16)-bit wide output data with auxiliary reference data for interfacing to VGA controllers, set-top box applications, etc. It is also possible to output video in Square Pixel formats accompanied by a square pixel clock of the appropriate frequency.

The SAA7115 can capture the serially coded data in the vertical blanking interval (VBI-data) of several broadcast standards. It also incorporates also a frame locked audio clock generation. It accepts CVBS or S-Video (Y-C) analog inputs from TV or VCR sources, including weak and distorted signals. The expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) can be used either to output unscaled video using 10-bit or 8-bit dithered resolution or to connect to other external digital video sources for reuse of the SAA7115’s scaler features. An enhanced image port (I-port) supports 8(16)-bit wide output data with auxiliary reference data for interfacing to VGA controllers, set-top box applications, etc. It is also possible to output video in Square Pixel formats accompanied by a square pixel clock of the appropriate frequency.

The SAA7115 can capture the serially coded data in the vertical blanking interval (VBI-data) of several broadcast standards. It also incorporates also a frame locked audio clock generation. It accepts CVBS or S-Video (Y-C) analog inputs from TV or VCR sources, including weak and distorted signals. The expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) can be used either to output unscaled video using 10-bit or 8-bit dithered resolution or to connect to other external digital video sources for reuse of the SAA7115’s scaler features. An enhanced image port (I-port) supports 8(16)-bit wide output data with auxiliary reference data for interfacing to VGA controllers, set-top box applications, etc. It is also possible to output video in Square Pixel formats accompanied by a square pixel clock of the appropriate frequency.

The SAA7115 can capture the serially coded data in the vertical blanking interval (VBI-data) of several broadcast standards. It also incorporates also a frame locked audio clock generation. It accepts CVBS or S-Video (Y-C) analog inputs from TV or VCR sources, including weak and distorted signals. The expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) can be used either to output unscaled video using 10-bit or 8-bit dithered resolution or to connect to other external digital video sources for reuse of the SAA7115’s scaler features. An enhanced image port (I-port) supports 8(16)-bit wide output data with auxiliary reference data for interfacing to VGA controllers, set-top box applications, etc. It is also possible to output video in Square Pixel formats accompanied by a square pixel clock of the appropriate frequency.