74F08
Quad 2-Input AND Gate

General Description
This device contains four independent gates, each of which performs the logic AND function.

Ordering Code:

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Package Number</th>
<th>Package Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74F08SC</td>
<td>M14A</td>
<td>14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow</td>
</tr>
<tr>
<td>74F08SJ</td>
<td>M14D</td>
<td>14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide</td>
</tr>
<tr>
<td>74F08PC</td>
<td>N14A</td>
<td>14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide</td>
</tr>
</tbody>
</table>

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

| Pin Names | Description | U.L. HIGH/LOW | Input I
\text{IH}/I
\text{IL} | Output I
\text{OH}/I
\text{OL} |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_n, B_n</td>
<td>Inputs</td>
<td>1.0/1.0</td>
<td>20 \mu A/−0.6 mA</td>
<td>−1 mA/20 mA</td>
</tr>
<tr>
<td>O_n</td>
<td>Outputs</td>
<td>50/33.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings (Note 1)

- Storage Temperature: −65°C to +150°C
- Ambient Temperature under Bias: −55°C to +125°C
- Junction Temperature under Bias: −55°C to +150°C
- VCC Pin Potential to Ground Pin: −0.5V to +7.0V
- Input Voltage (Note 2): −0.5V to +7.0V
- Input Current (Note 2): −30mA to +5.0mA
- Voltage Applied to Output in HIGH State (with VCC = 0V): −0.5V to VCC
- Standard Output 3-STATE Output: −0.5V to +5.5V
- Current Applied to Output in LOW State (Max): twice the rated IOL (mA)
- ESD Last Passing Voltage (Min): 4000V

Recommended Operating Conditions

- Free Air Ambient Temperature: 0°C to +70°C
- Supply Voltage: +4.5V to +5.5V

DC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>VCC</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIH</td>
<td>Input HIGH Voltage</td>
<td>2.0</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td>Recognized as a HIGH Signal</td>
</tr>
<tr>
<td>VIL</td>
<td>Input LOW Voltage</td>
<td>0.8</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td>Recognized as a LOW Signal</td>
</tr>
<tr>
<td>VCD</td>
<td>Input Clamp Diode Voltage</td>
<td>−1.2</td>
<td>V</td>
<td>Min</td>
<td>VIH = −1.8mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOH</td>
<td>Output HIGH Voltage</td>
<td>10% VCC</td>
<td>2.5</td>
<td>V</td>
<td>Min</td>
<td>VOH = −1mA</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>Output LOW Voltage</td>
<td>10% VCC</td>
<td>0.5</td>
<td>V</td>
<td>Min</td>
<td>VOL = 20mA</td>
<td></td>
</tr>
<tr>
<td>IH</td>
<td>Input HIGH Current</td>
<td>5.0</td>
<td>µA</td>
<td>Max</td>
<td>VIN = 2.7V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IW</td>
<td>Input HIGH Current</td>
<td>7.0</td>
<td>µA</td>
<td>Max</td>
<td>VIN = 7.0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>Output HIGH Leakage Current</td>
<td>50</td>
<td>µA</td>
<td>Max</td>
<td>VOUT = VCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD</td>
<td>Input Leakage Test</td>
<td>4.75</td>
<td>V</td>
<td>0.0</td>
<td>VDD = 1.9µA All Other Pins Grounded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>Output Leakage Circuit Current</td>
<td>3.75</td>
<td>µA</td>
<td>0.0</td>
<td>VDD = 150mV All Other Pins Grounded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL</td>
<td>Input LOW Current</td>
<td>−0.6</td>
<td>mA</td>
<td>Max</td>
<td>VIN = 0.3V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>Output Short-Circuit Current</td>
<td>−50</td>
<td>mA</td>
<td>Max</td>
<td>VOUT = 0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDD</td>
<td>Power Supply Current</td>
<td>5.5</td>
<td>mA</td>
<td>Max</td>
<td>VDD = HIGH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>Power Supply Current</td>
<td>8.6</td>
<td>mA</td>
<td>Max</td>
<td>VDD = LOW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>TA = −25°C</th>
<th>TC = +5.0V</th>
<th>TA = −55°C to +125°C</th>
<th>TC = +5.0V</th>
<th>TA = 0°C to +70°C</th>
<th>VCC = ±5.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C L = 50 pF</td>
</tr>
<tr>
<td>tPLH</td>
<td>Propagation Delay</td>
<td>3.0</td>
<td>4.2</td>
<td>5.6</td>
<td>2.5</td>
<td>7.5</td>
<td>3.0</td>
</tr>
<tr>
<td>tPHL</td>
<td>AIN, Bl to OIN</td>
<td>2.5</td>
<td>4.0</td>
<td>5.3</td>
<td>2.0</td>
<td>7.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
Package Number M14A
Physical Dimensions

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M14D

NOTES:
A. CONFORMS TO EIAJ ED1-720 REGISTRATION,
 ESTABLISHED IN DECEMBER, 1986.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTENSIONS.

M14DRevB1

DIMENSIONS ARE IN MILLIMETERS

LAND PATTERN RECOMMENDATION

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M14D
Physical Dimensions in inches (millimeters) unless otherwise noted (Continued)

PIN NO. IDENT
1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.740 - 0.270
(18.80 - 19.56)

0.990
(2.51)

0.250 - 0.810
(6.35 - 20.54)

0.092
(2.33)

0.033
(0.83)

0.203
(5.16)

INDEX AREA

OPTION 02

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com